
www.manaraa.com

ISR3: Communication and Data Storage for an Unmanned Ground

Vehicle�

Bruce A. Draper G�okhan Kutlu Edward M. Riseman Allen R. Hanson

Computer Vision Laboratory, Dept. of Computer Science

University of Massachusetts, Amherst, MA 01003

Abstract

Computer vision researchers working in mobile

robotics and other real-time domains are forced to con-

front issues not normally addressed in the computer

vision literature. Among these are communication,

or how to get data from one process to another, data

storage and retrieval, primarily for transient, image-

based data, and database management, for maps, ob-

ject models and other permanent (typically 3D) data.

This paper reviews e�orts at CMU, SRI and UMass

to build real-time computer vision systems for mobile

robotics, and presents a new tool, called ISR3, for com-

munication, data storage/retrieval and database man-

agement on the UMass Mobile Perception Laboratory

(MPL), a NAVLAB-like autonomous vehicle.

1 Introduction

As computer vision technology matures, researchers

are forced to divert some of their attention from sub-

problems (such as line extraction, model matching

and shape from shading) to complete systems. Al-

though many open subproblems remain, the need to

demonstrate success on real-world applications and

the growing belief that vision is inherently task-

oriented [1, 2, 5] are spurring research into the practi-

cal issues of building working systems.

Much of this work has focused on supporting al-

gorithm development and integration. In particu-

lar, both university researchers and commercial ven-

dors have produced software environments that com-

bine vision-oriented development tools with libraries

of standard algorithms and representations.

�This work was supported by ARPA through U.S. Army

TACOM under contract DAAE07-91-C-RO35, by ARPA

through U.S. Army TEC under contract DACA76-92-C-0041,

and by ARPA through Rome Labs under contract F30602-94-

C-0042.

None of these environments, however, are de-

signed for real-time applications. Researchers who ap-

ply computer vision to applications such as mobile

robotics need support for inter-process communica-

tion, short-term data storage and retrieval, and long-

term data management. This paper reviews some of

the approaches that have been tried for solving these

problems, such as ISR [4], CODGER [9] and the Core

Knowledge System (CKS; [10]). We then present a

further development of ISR, called ISR3, for manag-

ing these issues on board an unmanned vehicle (MPL).

2 Real-time Integration

2.1 Issues

When algorithms developed o�-line are to be com-

bined for a real-time application such as an unmanned

vehicle, several basic problems need to be solved.

Among them are:

Communication. Data must be passed from one

process|and often one processor|to the next. The

latency of the communication channel can be critical.

When data is shared among processes, concurrency

control becomes important to protect the integrity of

the data.

Data Storage/Retrieval. Vision algorithms of-

ten produce large amount of temporary data. A line

extraction algorithm, for example, may produce hun-

dreds (or thousands) of line segments from an image.

Although not persistent, such data may be repeat-

edly accessed by other modules (e.g. line grouping or

model matching algorithms), so the e�ciency of data

retrieval is critical.

Database Management. Maps, models and

other forms of a-priori knowledge make up a perma-

nent data base of information that visual algorithms

repeatedly access and occasionally alter. Although

less voluminous than the temporary data mentioned

www.manaraa.com

above, this data is persistent and must be managed

over time by e�cient storage and access mechanisms

which are geared to the nature (e.g. spatial, temporal,

3D) of the data.

2.2 Current Technology

One of the �rst tools to support real-time image

understanding was CODGER, a blackboard-style data

store developed for CMU's NAVLAB [9]. The idea be-

hind CODGER was that its \whiteboard" would serve

as the central data store, with all other processes read-

ing data from the white board and posting results to it.

CODGER was also an information fusion mechanism

that merged data by computing coordinate transfor-

mations and adjusting for time delays. Its authors

called it a whiteboard, rather than a blackboard, be-

cause it had �xed-length message bu�ers, so that new

messages forced old messaged to be purged. In ef-

fect, this was a primitive memory management sys-

tem. Since CODGER's \whiteboard" was managed

by a single process, it was an example of a (client-

server model) data store.

Unfortunately, the central blackboard of CODGER

became a bottleneck since all data messages

passed from one process to another had to go

through CODGER. This problem was exacerbated by

CODGER's role as a data fusion mechanism: Kluge

reports that CODGER spent most of its time comput-

ing coordinate transformations [6], slowing the central

communication process down even further.

After CODGER was abandoned, a point-to-point

communication package called EDDIE [12] was de-

veloped for NAVLAB. EDDIE was built on standard

interprocess communication (IPC) protocols, and al-

lowed processes to exchange instances of prede�ned

message types. EDDIE also included simple control

mechanisms, such as the ability to \wake up" a process

when a message arrives, and a small geometric model-

ing and map system. EDDIE has since been replaced

on board NAVLAB by TCX [11], a point-to-point

communication package, and the Annotated Map Sys-

tem [12] for controlling vehicles behaviors based on

location.

At about the same time as CODGER, researchers

at SRI proposed a blackboard system called the Core

Knowledge System (CKS; [10]). CKS, like CODGER,

was intended as a blackboard-style data store for an

autonomous vehicle. Unlike CODGER, however, it

was not intended for data fusion. The philosophy be-

hind CKS was that all messages (data) are merely

hypotheses produced by knowledge sources, and that

rather than fuse data, the blackboard should record

which process proposed it and how much con�dence

it had. Memory management was handled by giv-

ing each knowledge source a memory budget, which

it could allocate to messages it wrote or intended to

read.

Another type of data store, called ISR [4], was de-

veloped at the University of Massachusetts. Unlike

CODGER and CKS, ISR was designed as a tool for o�-

line algorithm development. As ISR's developers, we

were interested in the knowledge-directed interpreta-

tion of outdoor scenes, and the control issues thereof.

ISR was built to integrate many di�erent visual pro-

cedures into a single system, and therefore to develop

common data structures and mechanisms for passing

data from one procedure to the next.

3 ISR3

Under the ARPA Unmanned Ground Vehicle

(UGV) program, the University of Massachusetts was

developing the Mobile Perception Laboratory (MPL),

an autonomous vehicle similar to CMU's NAVLAB

[11]. The goal for MPL was a system that inte-

grates low-level behaviors, such as road following and

obstacle detection, with high-level behaviors such as

landmark-based navigation and map building. To sup-

port this project, we designed a prototype data store

for real-time vision called ISR3, which was imple-

mented on board MPL.

ISR (an acronym for intermediate symbolic repre-

sentation) has been the name of a series of symbolic

databases for vision developed at the University of

Massachusetts [4]. The ISR databases re
ect a belief

that computer vision requires more than image-like

arrays of numerical data; computer vision depends on

symbolic representations of abstract image events such

as regions, lines, and surfaces, and on mechanisms for

e�ciently accessing data objects under various types

of constraints (such as spatial proximity). One ver-

sion, ISR1.5, is now commercially available as part

of KBVision [13], while the most recent version, ISR3,

was used on-board MPL. Although each version of ISR

is a re�nement of its predecessor, they all assume that

visual procedures operate on symbolic records, called

tokens, or on groups of tokens, and that visual pro-

cedures manipulate tokens both for internal computa-

tions and for exchanging data with other procedures.

In particular, vision applications typically need

temporary storage for large numbers of tokens, which

they then access by name, feature value or spatial loca-

tion. Most of these tokens exist for only a short dura-

tion, such as the time required to process one image or

www.manaraa.com

a short sequence of images, and should then be deallo-

cated, although a few correspond to signi�cant results

(critical features, updated maps, etc.) and should per-

sist over time. ISR3 is an in-memory database whose

tokens are C++ class instances (unlike previous ver-

sions of the ISR) and that provides a library of func-

tions for storing and retrieving tokens, and for token

I/O.

As a rule, most visual algorithms operate on sets of

data rather than on individual data instances. Match-

ing algorithms, for example, compare a set of model

data instances to image data instances. Therefore

most of ISR3's storage and retrieval commands are

in the form of set operations, such as a request to

access all long, straight lines in the upper corner of

an image. Special facilities for optimizing spatial re-

trieval over arbitrary data sets are also provided, as

are macros for iterating over the instances of a set,

and functions for taking the union, intersection and

di�erences of sets.

4 System Demonstration

ISR3 was the data management system used dur-

ing demonstrations of the Mobile Perception Labora-

tory (MPL) in the fall of 1993. These demonstrations

showed the integration of low-level, reactive behaviors

such as road following and obstacle avoidance with

high-level perceptual capabilities such as landmark

recognition, as described in [8]. ISR3 was therefore

forced to support a wide variety of image processing

needs.

At one extreme were groups of processes that only

used ISR3 as a low-latency communications channel.

For example, ALVINN [7] (a neural network road fol-

lower), its video preprocessor, and the MPL's steer-

ing/throttle controller used ISR3 in this way, with

the video preprocessor passing reduced (32x32 inten-

sity) images to ALVINN at approximately 10Hz, and

ALVINN sending steering commands to the controller

at the same rate. These processes did not require

any complex data storage or retrieval capabilities, but

the speed of the communication channel was criti-

cal, since the latency of road following is one of two

factors (along with the latency of obstacle detection)

that determines a vehicle's speed. (In these exper-

iments, obstacle detection was slower than road fol-

lowing and limited MPL to 5 mph, so slower commu-

nication could have been tolerated.) The stereo corre-

spondence and re
exive avoidance modules also used

ISR3 as a simple communications channel, this time

for passing 255�240 disparity images at about 2.5Hz.

At the other extreme were processes that relied pri-

marily on ISR3's data storage and retrieval capabili-

ties. The landmark recognition behavior, for exam-

ple, was composed of three processes, one of which re-

trieved models of landmarks from the model base (or

\map") based on the vehicle's estimated position, one

which extracted 2D line segments from images (after

using color and texture to focus attention), and one of

which matched image lines to model lines, determin-

ing the vehicle's position and orientation relative to

the map [3]. In this case, the speed of communication

between these processes was less critical; the vehicle

was stopped during landmark recognition, so delays

were not a hazard. Moreover, the model matching al-

gorithm took on the order of a minute to execute, so

any communication delays were comparatively small.

Rapid spatial access to the data was critical, how-

ever; the model matcher only ran as quickly as it did

because it used the ISR3's spatial access routines to

quickly retrieve sets of data lines near the projections

of model lines. Data storage and retrieval e�ciency

was therefore the critical item for these processes.

5 Future Work

In general, ISR3 has been very successful when used

as a data store for the structured storage and retrieval

of temporary image data, such as regions of interest,

points and line segments. We underestimated, how-

ever, how often it would be used as a simple commu-

nications channel and how often we would need to port

it to other machines, and are making improvements in

these areas, as discussed below.

5.1 Point-to-Point Communications

The version of ISR3 used on MPL in the fall of

1993 used the physically shared memory of a Silicon

Graphics Iris 4D to implement interprocess communi-

cation. This had very low overhead, but meant that

ISR3 could not be ported to machines (or networks of

machines) without shared memory.

We are currently replacing the shared memory

model with an explicit virtual point-to-point commu-

nications layer developed on top of TCX, to make

ISR3 portable to machines without shared memory

and to provide the simplest possible communication

mechanism for processes which do not require any-

thing more. Processes will pass data between them-

selves by opening a communications channel and writ-

ing to it. The channel will e�ectively copy data dur-

ing transmission, resulting in more data copying but

www.manaraa.com

no synchronization overhead (note that the hardest

timing constraints are on low-level processes like road

following that pass small amounts of data and there-

fore will require very little data copying). This vir-

tual communications layer will be designed to use the

fastest means of communication available between any

two processes, whether through shared memory or

across a network. In all cases, however, it will pro-

vide a simple point-to-point interface to the system

designer.

5.2 Long-term Data Management

Although most visual data is temporary, some types

of data such as maps and object models are persistent

and need to be managed. Currently, long-term and

short-term data are not distinguished from each other

in ISR3; long-term data is simply short-term data that

is never purged, and all data is potentially shared be-

tween processes. With the change to a point-to-point

system, this approach will no longer be possible. In-

stead, there will be a special database process that

manages long-term data. Processes that need to ac-

cess this data open a communications channel to the

database, which acts as a server. The database will

manage simultaneous updates, record the history of

how maps and models are changed, and be able to

recover data in the event of a systems failure. The

database will also provide 3D spatial organization and

access mechanisms, as opposed to the current 2D ones,

since long-term data is generally 3D.

The reason we believe we can provide a central

client-server database without it becoming a bottle-

neck (as happened with CODGER) is that 1) most

data is temporary and will not go through the central

database, and 2) the processes that do use permanent

data are typically high-level processes such as land-

mark navigation that do not have the most demand-

ing timing constraints. Also, although there is some

overhead involved in opening a communication chan-

nel to the central database, no process has to do this

more than once, usually during start-up.

6 Conclusion

Real-time computer vision applications require

tools to support communication, short-term data stor-

age and retrieval, and long-term database manage-

ment. ISR3 is a tool that supports communication

and data storage (and will soon be extended to man-

age persistent data) that allows computer vision algo-

rithms developed o�-line to be integrated into practi-

cal real-time applications.

References

[1] J. Aloimonos. Purposive and Qualitative Active

Vision. In IUW, Pittsburgh, PA, pages 816{828,

Sept. 1990.

[2] D. Ballard. Animate Vision. Arti�cial Intelligence,

48:57{86, 1991.

[3] R. Beveridge. Local Search Algorithms for Geomet-

ric Object Recognition: Optimal Correspondence

and Pose. PhD thesis, Univ. of Massachusetts,

1993.

[4] J. Brolio, B. Draper, R. Beveridge, and A. Han-

son. The ISR: an Intermediate Symbolic Repre-

sentation for Computer Vision. IEEE Computer,

22(12):22{30, 1989.

[5] K. Ikeuchi and M. Hebert. Task Oriented Vision.

Conf. on Intelligent Robots and Systems, Raleigh,

NC, pages 2187{2194, July 1992.

[6] K. Kluge. Multisensor System Integration for Au-

tonomous Navigation Tasks. To appear in Intelli-

gent Vehicles.

[7] D. Pomerleau. Neural Network Perception for Mo-

bile Robot Guidance. PhD thesis, Carnegie Mellon

University, 1992.

[8] B. Rochwerger, C. Fennema, B. Draper, A. Han-

son and E. Riseman. An Architecture for Reactive

Behavior. ICPR (this volume).

[9] A. Stentz. The CODGER System for Mobile

Robot Navigation. In [11], 1990.

[10] T. Strat and G. Smith. Core Knowledge System:

Storage and Retrieval of Inconsistent Information.

IUW, pages 660-665, 1988.

[11] C. Thorpe. Vision and Navigation: The Carnegie

Mellon Navlab. Kluwer Academic Publishers,

1990.

[12] C. Thorpe and J. Gowdy. Annotated Maps for

Autonomous Land Vehicles. In IUW, Pittsburgh,

PA, pages 765{771, Sept. 1990.

[13] T. Williams. Image Understanding Tools. In

ICPR, Atlantic City, N.J., pages 606{610, June

1990.

